Volume 107, Issue 2 February 2023 | | Advertisement Registration is open for April Meeting 2023: Quarks to Cosmos! Discover cutting-edge research in astrophysics, particle physics, nuclear physics, and gravitation, network with other physicists to advance your career, and learn about current issues relevant to the physics community. Register today » | | | | | Not an APS member? Join today to start connecting with a community of more than 50,000 physicists. | | | | Editors' Suggestion M. S. Abdallah et al. (The STAR Collaboration) Phys. Rev. C 107, 024908 (2023) – Published 13 February 2023 | Various models of the QCD phase diagram favor a first-order phase transition to quark-gluon plasma, and therefore a critical endpoint which could manifest itself in measurable fluctuations and correlations. The authors report measurements of the moments of the net proton multiplicity fluctuations (cumulants) and correlation functions from the RHIC beam energy scan. They establish that at √sNN=3 GeV the produced system is dominated by hadronic rather than thermal interactions. This puts a limit on the search for the elusive critical point in the QCD phase diagram to energies higher than 3 GeV. | | | | | | Editors' Suggestion N. J. Abdulameer et al. (PHENIX Collaboration) Phys. Rev. C 107, 024914 (2023) – Published 24 February 2023 | The PHENIX experiment at RHIC presents a measurement of thermal photons emitted from the quark-gluon plasma produced in collisions of Au ions at √sNN=39 and 62.4 GeV. The yield of these photons exceeds what is expected from appropriately scaled proton collisions and is qualitatively consistent with a significant thermal contribution. Compared to results from other beam energies, the data suggest that the bulk of thermal photons are emitted under similar conditions near the transition of the quark-gluon plasma to hadronic matter. | | | | | | Editors' Suggestion Viswanathan Palaniappan, S. Ramanan, and Michael Urban Phys. Rev. C 107, 025804 (2023) – Published 15 February 2023 | The behavior of the unbound neutrons in the inner crust of neutron stars is linked to various neutron-star characteristics such as glitches in the repetition rate of pulsars. This paper presents a novel calculation of low-density superfluid neutron matter using techniques and interactions previously applied to the study of finite nuclei. The starting point is a two-body interaction softened using renormalization-group techniques. The resulting interaction is used in a Hartree-Fock-Bogoliubov calculation that includes pairing. This provides a good starting point for the many-body perturbation expansion, and for including more sophisticated nuclear interactions in future work. | | | | | | Editors' Suggestion Letter Nazira Nazir, S. Jehangir, S. P. Rouoof, G. H. Bhat, J. A. Sheikh, N. Rather, and S. Frauendorf Phys. Rev. C 107, L021303 (2023) – Published 14 February 2023 | One of the main research themes in quantum many-body systems is the emergence of collective features from microscopic degrees of freedom. Using the microscopic approach of the triaxial projected shell model, the authors demonstrate that admixing a few quasiparticle excitations into the vacuum configuration with a fixed triaxiality parameter γ provides a quantitative description of the shape fluctuations of the γ-soft nucleus 104Ru. The collective features are elucidated using the quadrupole shape invariant analysis, and also the staggering phase classification of the γ band. | | | | | | Letter D. M. Cox et al. Phys. Rev. C 107, L021301 (2023) – Published 6 February 2023 | | | Letter Y. Beaujeault-Taudière, M. Frosini, J.-P. Ebran, T. Duguet, R. Roth, and V. Somà Phys. Rev. C 107, L021302 (2023) – Published 10 February 2023 | | | Editors' Suggestion Letter Nazira Nazir, S. Jehangir, S. P. Rouoof, G. H. Bhat, J. A. Sheikh, N. Rather, and S. Frauendorf Phys. Rev. C 107, L021303 (2023) – Published 14 February 2023 | One of the main research themes in quantum many-body systems is the emergence of collective features from microscopic degrees of freedom. Using the microscopic approach of the triaxial projected shell model, the authors demonstrate that admixing a few quasiparticle excitations into the vacuum configuration with a fixed triaxiality parameter γ provides a quantitative description of the shape fluctuations of the γ-soft nucleus 104Ru. The collective features are elucidated using the quadrupole shape invariant analysis, and also the staggering phase classification of the γ band. | | | | | | Letter W. Horiuchi and N. Itagaki Phys. Rev. C 107, L021304 (2023) – Published 21 February 2023 | | | Letter J. Okołowicz, M. Płoszajczak, and W. Nazarewicz Phys. Rev. C 107, L021305 (2023) – Published 24 February 2023 | | | Letter D. Ramos, M. Caamaño, F. Farget, C. Rodríguez-Tajes, A. Lemasson, C. Schmitt, L. Audouin, J. Benlliure, E. Casarejos, E. Clement, D. Cortina, O. Delaune, X. Derkx, A. Dijon, D. Doré, B. Fernández-Domínguez, G. de France, A. Heinz, B. Jacquot, C. Paradela, M. Rejmund, T. Roger, and M.-D. Salsac Phys. Rev. C 107, L021601 (2023) – Published 13 February 2023 | | | Letter Markus Nöth Phys. Rev. C 107, L021602 (2023) – Published 15 February 2023 | | | Letter Jiangyong Jia and Chunjian Zhang Phys. Rev. C 107, L021901 (2023) – Published 14 February 2023 | | | Letter Yu. B. Ivanov Phys. Rev. C 107, L021902 (2023) – Published 23 February 2023 | | | Nucleon-Nucleon Interaction, Few-Body Systems | Anna C. Bowman and Jared Vanasse Phys. Rev. C 107, 024001 (2023) – Published 9 February 2023 | | | Hoai Le, Johann Haidenbauer, Ulf-G. Meißner, and Andreas Nogga Phys. Rev. C 107, 024002 (2023) – Published 24 February 2023 | | | A. Såmark-Roth et al. Phys. Rev. C 107, 024301 (2023) – Published 6 February 2023 | | | A. Dumitrescu and D. S. Delion Phys. Rev. C 107, 024302 (2023) – Published 6 February 2023 | | | K. Mizuyama, N. Nhu Le, T. Dieu Thuy, N. Hoang Tung, D. Quang Tam, and T. V. Nhan Hao Phys. Rev. C 107, 024303 (2023) – Published 6 February 2023 | | | X. Zhang, W. Lin, J. M. Yao, C. F. Jiao, A. M. Romero, T. R. Rodríguez, and H. Hergert Phys. Rev. C 107, 024304 (2023) – Published 8 February 2023 | | | Jun Zhang, Xiao-Tao He, Yu-Chun Li, and Hai-Qian Zhang Phys. Rev. C 107, 024305 (2023) – Published 10 February 2023 | | | Y. Ishibashi, A. Gladkov, Y. Ichikawa, A. Takamine, H. Nishibata, T. Sato, H. Yamazaki, T. Abe, J. M. Daugas, T. Egami, T. Fujita, G. Georgiev, K. Imamura, T. Kawaguchi, W. Kobayashi, Y. Nakamura, A. Ozawa, M. Sanjo, N. Shimizu, D. Tominaga, L. C. Tao, K. Asahi, and H. Ueno Phys. Rev. C 107, 024306 (2023) – Published 10 February 2023 | | | Yu. A. Demidov, M. G. Kozlov, A. E. Barzakh, and V. A. Yerokhin Phys. Rev. C 107, 024307 (2023) – Published 13 February 2023 | | | Y. L. Yang, P. W. Zhao, and Z. P. Li Phys. Rev. C 107, 024308 (2023) – Published 14 February 2023 | | | Naoyuki Itagaki and Emiko Hiyama Phys. Rev. C 107, 024309 (2023) – Published 16 February 2023 | | | K. Hebeler, V. Durant, J. Hoppe, M. Heinz, A. Schwenk, J. Simonis, and A. Tichai Phys. Rev. C 107, 024310 (2023) – Published 17 February 2023 | | | E. M. Lykiardopoulou, G. Audi, T. Dickel, W. J. Huang, D. Lunney, Wolfgang R. Plaß, M. P. Reiter, J. Dilling, and A. A. Kwiatkowski (TITAN Collaboration) Phys. Rev. C 107, 024311 (2023) – Published 21 February 2023 | | | S. Chatterjee, B. Mondal, S. Samanta, S. Das, R. Raut, S. S. Ghugre, P. C. Srivastava, A. K. Sinha, U. Garg, Neelam, Naveen Kumar, P. Jones, Md. S. R. Laskar, F. S. Babra, S. Biswas, S. Saha, P. Singh, and R. Palit Phys. Rev. C 107, 024312 (2023) – Published 22 February 2023 | | | F. G. A. Quarati, G. Bollen, P. Dorenbos, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, D. K. Keblbeck, X. Mougeot, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, J. Surbrook, and I. Yandow Phys. Rev. C 107, 024313 (2023) – Published 23 February 2023 | | | R. Takatsu, Y. Suzuki, W. Horiuchi, and M. Kimura Phys. Rev. C 107, 024314 (2023) – Published 27 February 2023 | | | K. Neergård Phys. Rev. C 107, 024315 (2023) – Published 28 February 2023 | | | A. Jedele, K. Hagel, M. Q. Sorensen, B. Harvey, A. Abbott, J. Gauthier, A. Hannaman, A. A. Hood, Y.-W. Lui, L. McCann, A. B. McIntosh, L. A. McIntosh, S. Schultz, Z. Tobin, R. Wada, M. Youngs, and S. Yennello Phys. Rev. C 107, 024601 (2023) – Published 1 February 2023 | | | V. V. Parkar, A. Parmar, Prasanna M., V. Jha, and S. Kailas Phys. Rev. C 107, 024602 (2023) – Published 8 February 2023 | | | H. Paşca, A. V. Andreev, G. G. Adamian, and N. V. Antonenko Phys. Rev. C 107, 024603 (2023) – Published 9 February 2023 | | | Yu-Hai Zhang, Jing-Jing Li, Na Tang, Xin-Rui Zhang, Zhong Liu, and Feng-Shou Zhang Phys. Rev. C 107, 024604 (2023) – Published 10 February 2023 | | | A. Spatafora et al. (NUMEN Collaboration) Phys. Rev. C 107, 024605 (2023) – Published 13 February 2023 | | | Yijia Qiu, Changlin Lan, Yonghao Chen, Liyang Jiang, Jie Bao, Yiwei Yang, Zhongwei Wen, Rong Liu, Xichao Ruan, Jingyu Tang, Jie Ren, Hantao Jing, Guangyuan Luan, Ruirui Fan, Yangbo Nie, Xianlin Yang, Xiaojun Li, Han Yi, Wei Jiang, Tao Ye, Yi Yang, Shilong Liu, and Jincheng Wang Phys. Rev. C 107, 024606 (2023) – Published 13 February 2023 | | | K. S. Kim, Soonchul Choi, Tsuyoshi Miyatsu, Myung-Ki Cheoun, Hungchong Kim, and W. Y. So Phys. Rev. C 107, 024607 (2023) – Published 14 February 2023 | | | Tomotsugu Wakasa, Shingo Tagami, Jun Matsui, Maya Takechi, and Masanobu Yahiro Phys. Rev. C 107, 024608 (2023) – Published 14 February 2023 | | | Guang-Shuai Li et al. Phys. Rev. C 107, 024609 (2023) – Published 17 February 2023 | | | A. G. Magner, S. N. Fedotkin, and U. V. Grygoriev Phys. Rev. C 107, 024610 (2023) – Published 17 February 2023 | | | Guang Jin Li (黎广金) and Xiao Jun Bao (包小军) Phys. Rev. C 107, 024611 (2023) – Published 21 February 2023 | | | A. B. McIntosh, K. Hagel, L. A. McIntosh, R. Wada, J. Gauthier, P. J. Cammarata, A. Keeler, A. Abbott, A. Hannaman, B. Harvey, A. Jedele, Y. W. Lui, L. W. May, M. Sorensen, M. Youngs, A. Zarrella, and S. J. Yennello Phys. Rev. C 107, 024612 (2023) – Published 21 February 2023 | | | E. Cupertino Gomes, U. B. Rodríguez, M. Gonçalves, A. R. C. Pinheiro, B. M. Santos, C. R. R. Souza, L. R. Hirsch, and S. B. Duarte Phys. Rev. C 107, 024613 (2023) – Published 21 February 2023 | | | Megha Chandran and K. P. Santhosh Phys. Rev. C 107, 024614 (2023) – Published 22 February 2023 | | | A. Di Nitto, E. Vardaci, F. Davide, G. La Rana, M. Ashaduzzaman, D. Mercogliano, P. A. Setaro, T. Banerjee, A. Vanzanella, D. Bianco, M. Cinausero, N. Gelli, F. Loffredo, and M. Quarto Phys. Rev. C 107, 024615 (2023) – Published 24 February 2023 | | | S. B. Masadeh, D. A. Abdallah, and M. I. Jaghoub Phys. Rev. C 107, 024616 (2023) – Published 24 February 2023 | | | A. Grassi, J. Golak, W. N. Polyzou, R. Skibiński, H. Witała, and H. Kamada Phys. Rev. C 107, 024617 (2023) – Published 24 February 2023 | | | Sergei P. Maydanyuk Phys. Rev. C 107, 024618 (2023) – Published 28 February 2023 | | | Relativistic Nuclear Collisions | M. S. Abdallah et al. (STAR Collaboration) Phys. Rev. C 107, 024901 (2023) – Published 3 February 2023 | | | Mathis Pepin, Peter Christiansen, Stéphane Munier, and Jean-Yves Ollitrault Phys. Rev. C 107, 024902 (2023) – Published 3 February 2023 | | | M. Kozhevnikova and Yu. B. Ivanov Phys. Rev. C 107, 024903 (2023) – Published 3 February 2023 | | | István Szanyi, Tamás Biró, László Jenkovszky, and Vladyslav Libov Phys. Rev. C 107, 024904 (2023) – Published 6 February 2023 | | | Niseem Magdy Phys. Rev. C 107, 024905 (2023) – Published 7 February 2023 | | | Arpit Singh, P. K. Srivastava, Gauri Devi, and B. K. Singh Phys. Rev. C 107, 024906 (2023) – Published 8 February 2023 | | | N. J. Abdulameer et al. (PHENIX Collaboration) Phys. Rev. C 107, 024907 (2023) – Published 9 February 2023 | | | Editors' Suggestion M. S. Abdallah et al. (The STAR Collaboration) Phys. Rev. C 107, 024908 (2023) – Published 13 February 2023 | Various models of the QCD phase diagram favor a first-order phase transition to quark-gluon plasma, and therefore a critical endpoint which could manifest itself in measurable fluctuations and correlations. The authors report measurements of the moments of the net proton multiplicity fluctuations (cumulants) and correlation functions from the RHIC beam energy scan. They establish that at √sNN=3 GeV the produced system is dominated by hadronic rather than thermal interactions. This puts a limit on the search for the elusive critical point in the QCD phase diagram to energies higher than 3 GeV. | | | | | | Yan-ting Feng, Zi-yao Song, Feng-lan Shao, and Jun Song Phys. Rev. C 107, 024909 (2023) – Published 13 February 2023 | | | Renan Hirayama, Frédérique Grassi, Willian Matioli Serenone, and Jean-Yves Ollitrault Phys. Rev. C 107, 024910 (2023) – Published 17 February 2023 | | | Ravindra Singh, Yoshini Bailung, Sumit Kumar Kundu, and Ankhi Roy Phys. Rev. C 107, 024911 (2023) – Published 17 February 2023 | | | M. S. Abdallah et al. (STAR Collaboration) Phys. Rev. C 107, 024912 (2023) – Published 22 February 2023 | | | Oleh Savchuk, Roman V. Poberezhnyuk, Anton Motornenko, Jan Steinheimer, Mark I. Gorenstein, and Volodymyr Vovchenko Phys. Rev. C 107, 024913 (2023) – Published 23 February 2023 | | | Editors' Suggestion N. J. Abdulameer et al. (PHENIX Collaboration) Phys. Rev. C 107, 024914 (2023) – Published 24 February 2023 | The PHENIX experiment at RHIC presents a measurement of thermal photons emitted from the quark-gluon plasma produced in collisions of Au ions at √sNN=39 and 62.4 GeV. The yield of these photons exceeds what is expected from appropriately scaled proton collisions and is qualitatively consistent with a significant thermal contribution. Compared to results from other beam energies, the data suggest that the bulk of thermal photons are emitted under similar conditions near the transition of the quark-gluon plasma to hadronic matter. | | | | | | Jin Hu Phys. Rev. C 107, 024915 (2023) – Published 27 February 2023 | | | Taesoo Song Phys. Rev. C 107, 024916 (2023) – Published 27 February 2023 | | | Yanjun Chen and Wei Jiang Phys. Rev. C 107, 025201 (2023) – Published 3 February 2023 | | | A. Martínez Torres, K. P. Khemchandani, and E. Oset Phys. Rev. C 107, 025202 (2023) – Published 3 February 2023 | | | Ke Wang and Bo-Chao Liu Phys. Rev. C 107, 025203 (2023) – Published 9 February 2023 | | | Qiaofeng Liu, Ian Low, and Thomas Mehen Phys. Rev. C 107, 025204 (2023) – Published 14 February 2023 | | | Jing-Feng Li, Cheng Chen, Gang Li, Chun-Sheng An, Cheng-Rong Deng, and Ju-Jun Xie Phys. Rev. C 107, 025205 (2023) – Published 14 February 2023 | | | Ravindra Singh, Swapnesh Khade, and Ankhi Roy Phys. Rev. C 107, 025206 (2023) – Published 15 February 2023 | | | Shuntaro Sakai and Daisuke Jido Phys. Rev. C 107, 025207 (2023) – Published 17 February 2023 | | | Renan Hirayama, Jan Staudenmaier, and Hannah Elfner Phys. Rev. C 107, 025208 (2023) – Published 27 February 2023 | | | G. R. Boroun and B. Rezaei Phys. Rev. C 107, 025209 (2023) – Published 27 February 2023 | | | Electroweak Interaction, Symmetries | O. Niţescu, S. Stoica, and F. Šimkovic Phys. Rev. C 107, 025501 (2023) – Published 13 February 2023 | | | M. Kabirnezhad Phys. Rev. C 107, 025502 (2023) – Published 27 February 2023 | | | C. Augier et al. (CUPID-Mo Collaboration) Phys. Rev. C 107, 025503 (2023) – Published 28 February 2023 | | | R. Somasundaram, I. Tews, and J. Margueron Phys. Rev. C 107, 025801 (2023) – Published 3 February 2023 | | | Michał Marczenko, Larry McLerran, Krzysztof Redlich, and Chihiro Sasaki Phys. Rev. C 107, 025802 (2023) – Published 3 February 2023 | | | Gy. Gyürky, P. Mohr, A. Angyal, Z. Halász, G. G. Kiss, Zs. Mátyus, T. N. Szegedi, T. Szücs, and Zs. Fülöp Phys. Rev. C 107, 025803 (2023) – Published 8 February 2023 | | | Editors' Suggestion Viswanathan Palaniappan, S. Ramanan, and Michael Urban Phys. Rev. C 107, 025804 (2023) – Published 15 February 2023 | The behavior of the unbound neutrons in the inner crust of neutron stars is linked to various neutron-star characteristics such as glitches in the repetition rate of pulsars. This paper presents a novel calculation of low-density superfluid neutron matter using techniques and interactions previously applied to the study of finite nuclei. The starting point is a two-body interaction softened using renormalization-group techniques. The resulting interaction is used in a Hartree-Fock-Bogoliubov calculation that includes pairing. This provides a good starting point for the many-body perturbation expansion, and for including more sophisticated nuclear interactions in future work. | | | | | | A. Gula, R. J. deBoer, S. Aguilar, J. Arroyo, C. Boomershine, B. Frentz, J. Görres, S. Henderson, R. Kelmar, S. McGuinness, K. V. Manukyan, S. Moylan, D. Robertson, C. Seymour, Shahina, E. Stech, W. Tan, J. Wilkinson, and M. Wiescher Phys. Rev. C 107, 025805 (2023) – Published 22 February 2023 | | | F. Lyra, L. Moreira, R. Negreiros, R. O. Gomes, and V. Dexheimer Phys. Rev. C 107, 025806 (2023) – Published 28 February 2023 | | | Samuel Ayet San Andrés et al. Phys. Rev. C 107, 029901 (2023) – Published 6 February 2023 | | | Y. X. Luo et al. Phys. Rev. C 107, 029902 (2023) – Published 9 February 2023 | | | Elena Litvinova and Peter Schuck Phys. Rev. C 107, 029903 (2023) – Published 13 February 2023 | | | | |
No comments:
Post a Comment