Volume 107, Issue 6 June 2023 | | Advertisement Physical Review C achieves a 3.1 Journal Impact Factor Score According to the 2022 Journal Citation Reports (Clarivate Analytics, 2022), Physical Review C (PRC) achieved a 3.1 Journal Impact Factor Score. | | | | | Advertisement | Probing the nonexponential decay regime in open quantum systems S. M. Wang (王思敏), W. Nazarewicz, A. Volya, and Y. G. Ma (马余刚) Phys. Rev. Research 5, 023183 – Published 23 June 2023 | | | | | Electric dipole polarizability of 40Ca R. W. Fearick, P. von Neumann-Cosel, S. Bacca, J. Birkhan, F. Bonaiti, I. Brandherm, G. Hagen, H. Matsubara, W. Nazarewicz, N. Pietralla, V. Yu. Ponomarev, P.-G. Reinhard, X. Roca-Maza, A. Richter, A. Schwenk, J. Simonis, and A. Tamii Phys. Rev. Research 5, L022044 – Published 31 May 2023 | | Sign up to receive Physical Review Research monthly alerts | | | | | Not an APS member? Join today to start connecting with a community of more than 50,000 physicists. | | | | Editors' Suggestion Martin Schäfer and Betzalel Bazak Phys. Rev. C 107, 064001 (2023) – Published 6 June 2023 | In nuclear physics, effective field theory is a low-energy manifestation of QCD with baryons and pions as its constituents, rather than quarks and gluons. At very low energies, even the pions can be integrated out, providing a simple yet thorough framework to study nuclear physics with controlled theoretical uncertainties. This work extends previous studies to A≤4 with accurate predictions for low-energy few-nucleon scattering, comparable to those from the best current analyses. The work confirms that a four-body force is needed at next-to-leading order to achieve cutoff-independent results. | | | | | | Editors' Suggestion Nuwan Yapa, Kévin Fossez, and Sebastian König Phys. Rev. C 107, 064316 (2023) – Published 26 June 2023 | Connecting bound states and unbound resonant states continues to be a key challenge for the description of nuclei as open quantum systems. This paper uses eigenvector continuation, a newly popular method of extrapolating tractable calculations to otherwise intractable parameter regions, to go from bound-state data to resonances in the continuum. The successful benchmarking in a two-body system promises possible applications to otherwise inaccessible systems of physical interest. | | | | | | Editors' Suggestion A. Deltuva and D. Jurčiukonis Phys. Rev. C 107, 064602 (2023) – Published 6 June 2023 | Nuclear reactions are a powerful tool for obtaining information on yet unknown aspects of nuclear structure. This work combines an elaborate reaction framework, based on the Faddeev equations, with novel nonlocal nucleon-nucleus potentials including core excitations. The authors show that nonlocalities lead to an improved description of inelastic deuteron scattering data and may impact the extracted structure information. These results may serve as motivation for exploring a wider range of reaction frameworks. | | | | | | Editors' Suggestion Xiang-Xiang Sun (孙向向) and Lu Guo (郭璐) Phys. Rev. C 107, 064609 (2023) – Published 22 June 2023 | The hot fusion reaction 48C + 238U is studied with time-dependent Hartree-Fock theory in combination with coupled-channels and fusion-by-diffusion models. The authors find that the fusion probability is strongly dependent on the orientation of the 238U nucleus, with the probability being greatest for the tip collision orientation. This understanding will be applied in the future to determine optimal target and projectile combinations for the synthesis of elements Z=119 and 120. | | | | | | Editors' Suggestion Letter L. Girlanda, E. Filandri, A. Kievsky, L. E. Marcucci, and M. Viviani Phys. Rev. C 107, L061001 (2023) – Published 16 June 2023 | Chiral effective field theory allows one to express nuclear physics observables in terms of low-energy constants (LECs), representing physics at unresolved scales. In this work the authors focus on the two-nucleon contact interaction at fourth order (N3LO) and use a unitary transformation to reduce the number of involved LECs. This procedure induces a three-nucleon (3N) interaction depending on five unconstrained LECs. Those can be used, in association with a two-nucleon (2N) interaction, to fit very accurate data on polarization observables at low energies, in particular the p-d Ay polarization asymmetry. Thereby, adjusting the induced 3N N3LO LECs can solve the long-standing Ay puzzle. | | | | | | Editors' Suggestion Letter L. Girlanda, E. Filandri, A. Kievsky, L. E. Marcucci, and M. Viviani Phys. Rev. C 107, L061001 (2023) – Published 16 June 2023 | Chiral effective field theory allows one to express nuclear physics observables in terms of low-energy constants (LECs), representing physics at unresolved scales. In this work the authors focus on the two-nucleon contact interaction at fourth order (N3LO) and use a unitary transformation to reduce the number of involved LECs. This procedure induces a three-nucleon (3N) interaction depending on five unconstrained LECs. Those can be used, in association with a two-nucleon (2N) interaction, to fit very accurate data on polarization observables at low energies, in particular the p-d Ay polarization asymmetry. Thereby, adjusting the induced 3N N3LO LECs can solve the long-standing Ay puzzle. | | | | | | Letter I. Korover et al. (CLAS Collaboration) Phys. Rev. C 107, L061301 (2023) – Published 6 June 2023 | | | Letter D. Seweryniak, T. Huang, K. Auranen, A. D. Ayangeakaa, B. B. Back, M. P. Carpenter, P. Chowdhury, R. M. Clark, P. A. Copp, Z. Favier, K. Hauschild, X.-T. He, T. L. Khoo, F. G. Kondev, A. Korichi, T. Lauritsen, J. Li, C. Morse, D. H. Potterveld, G. Savard, S. Stolze, J. Wu, J. Zhang, and Y.-F. Xu Phys. Rev. C 107, L061302 (2023) – Published 9 June 2023 | | | Letter N. Dronchi, J. Berkman, R. J. Charity, J. M. Elson, L. G. Sobotka, A. G. Thomas, A. Saastamoinen, M. Barbui, J. Bishop, C. E. Parker, B. T. Roeder, G. V. Rogachev, D. P. Scriven, S. T. Marley, and R. M. Shaffer Phys. Rev. C 107, L061303 (2023) – Published 20 June 2023 | | | Letter S. Santra, A. Pal, D. Chattopadhyay, A. Kundu, P. C. Rout, Ramandeep Gandhi, A. Baishya, T. Santhosh, K. Ramachandran, R. Tripathi, B. J. Roy, T. N. Nag, G. Mohanto, S. De, B. K. Nayak, and S. Kailas Phys. Rev. C 107, L061601 (2023) – Published 20 June 2023 | | | Letter Aurel Bulgac Phys. Rev. C 107, L061602 (2023) – Published 21 June 2023 | | | Letter M. I. Abdulhamid et al. (STAR Collaboration) Phys. Rev. C 107, L061901 (2023) – Published 1 June 2023 | | | Letter Zhiwan Xu, Gang Wang, Aihong Tang, and Huan Zhong Huang Phys. Rev. C 107, L061902 (2023) – Published 23 June 2023 | | | Letter J. Skowronski, E. Masha, D. Piatti, M. Aliotta, H. Babu, D. Bemmerer, A. Boeltzig, R. Depalo, A. Caciolli, F. Cavanna, L. Csedreki, Z. Fülöp, G. Imbriani, D. Rapagnani, S. Rümmler, K. Schmidt, R. S. Sidhu, T. Szücs, S. Turkat, and A. Yadav Phys. Rev. C 107, L062801 (2023) – Published 14 June 2023 | | | Nucleon-Nucleon Interaction, Few-Body Systems | Editors' Suggestion Martin Schäfer and Betzalel Bazak Phys. Rev. C 107, 064001 (2023) – Published 6 June 2023 | In nuclear physics, effective field theory is a low-energy manifestation of QCD with baryons and pions as its constituents, rather than quarks and gluons. At very low energies, even the pions can be integrated out, providing a simple yet thorough framework to study nuclear physics with controlled theoretical uncertainties. This work extends previous studies to A≤4 with accurate predictions for low-energy few-nucleon scattering, comparable to those from the best current analyses. The work confirms that a four-body force is needed at next-to-leading order to achieve cutoff-independent results. | | | | | | Anil Khachi, Lalit Kumar, M. R. Ganesh Kumar, and O. S. K. S. Sastri Phys. Rev. C 107, 064002 (2023) – Published 28 June 2023 | | | Renat A. Sultanov and Sadhan K. Adhikari Phys. Rev. C 107, 064003 (2023) – Published 30 June 2023 | | | Ruijia Li and Chang Xu Phys. Rev. C 107, 064301 (2023) – Published 2 June 2023 | | | Tomoya Naito (内藤智也), Gianluca Colò, Haozhao Liang (梁豪兆), Xavier Roca-Maza, and Hiroyuki Sagawa (佐川弘幸) Phys. Rev. C 107, 064302 (2023) – Published 7 June 2023 | | | Tao Wang Phys. Rev. C 107, 064303 (2023) – Published 8 June 2023 | | | Hantao Zhang, Dong Bai, Zhen Wang, and Zhongzhou Ren Phys. Rev. C 107, 064304 (2023) – Published 12 June 2023 | | | H. K. Wang, Y. J. Li, Y. B. Wang, A. Jalili, and Y. B. Qian Phys. Rev. C 107, 064305 (2023) – Published 13 June 2023 | | | Saar Beck, Ronen Weiss, and Nir Barnea Phys. Rev. C 107, 064306 (2023) – Published 14 June 2023 | | | M. Sánchez Sánchez, D. D. Dao, and L. Bonneau Phys. Rev. C 107, 064307 (2023) – Published 14 June 2023 | | | Takayuki Myo and Hiroki Takemoto Phys. Rev. C 107, 064308 (2023) – Published 15 June 2023 | | | D. Yates et al. Phys. Rev. C 107, 064309 (2023) – Published 15 June 2023 | | | Z. H. Li, Y. Kuang, Y. Huang, X. L. Tu, Z. P. Li, K. H. Fang, J. T. Zhang, and K. Yue Phys. Rev. C 107, 064310 (2023) – Published 20 June 2023 | | | C. R. Hoffman, R. S. Lubna, E. Rubino, S. L. Tabor, K. Auranen, P. C. Bender, C. M. Campbell, M. P. Carpenter, J. Chen, M. Gott, J. P. Greene, D. E. M. Hoff, T. Huang, H. Iwasaki, F. G. Kondev, T. Lauritsen, B. Longfellow, C. Santamaria, D. Seweryniak, T. L. Tang, G. L. Wilson, J. Wu, and S. Zhu Phys. Rev. C 107, 064311 (2023) – Published 20 June 2023 | | | H. Kokkonen, K. Auranen, J. Uusitalo, S. Eeckhaudt, T. Grahn, P. T. Greenlees, P. Jones, R. Julin, S. Juutinen, M. Leino, A.-P. Leppänen, M. Nyman, J. Pakarinen, P. Rahkila, J. Sarén, C. Scholey, J. Sorri, and M. Venhart Phys. Rev. C 107, 064312 (2023) – Published 20 June 2023 | | | B. Mukeru, M. B. Mahatikele, and G. J. Rampho Phys. Rev. C 107, 064313 (2023) – Published 21 June 2023 | | | Pierre Nzabahimana, Thomas Redpath, Thomas Baumann, Pawel Danielewicz, Pablo Giuliani, and Paul Guèye Phys. Rev. C 107, 064315 (2023) – Published 26 June 2023 | | | Editors' Suggestion Nuwan Yapa, Kévin Fossez, and Sebastian König Phys. Rev. C 107, 064316 (2023) – Published 26 June 2023 | Connecting bound states and unbound resonant states continues to be a key challenge for the description of nuclei as open quantum systems. This paper uses eigenvector continuation, a newly popular method of extrapolating tractable calculations to otherwise intractable parameter regions, to go from bound-state data to resonances in the continuum. The successful benchmarking in a two-body system promises possible applications to otherwise inaccessible systems of physical interest. | | | | | | M. Murata, T. Kawabata, S. Adachi, H. Akimune, S. Amano, Y. Fujikawa, T. Furuno, K. Inaba, Y. Ishii, S. Miyamoto, M. Tsumura, and H. Utsunomiya Phys. Rev. C 107, 064317 (2023) – Published 27 June 2023 | | | S. Chakraborty et al. Phys. Rev. C 107, 064318 (2023) – Published 27 June 2023 | | | T. Vu Dong, L. Tan Phuc, N. Quang Hung, N. Dinh Dang, T. Dieu Huyen, and N. L. Anh Tuan Phys. Rev. C 107, 064319 (2023) – Published 29 June 2023 | | | A. K. Mondal et al. Phys. Rev. C 107, 064320 (2023) – Published 30 June 2023 | | | U. C. Perera and A. V. Afanasjev Phys. Rev. C 107, 064321 (2023) – Published 30 June 2023 | | | Tao Wang, Bing-cheng He, Dong-kang Li, and Chun-xiao Zhou Phys. Rev. C 107, 064322 (2023) – Published 30 June 2023 | | | Himanshu Sharma, Moumita Maiti, T. N. Nag, and S. Sodaye Phys. Rev. C 107, 064601 (2023) – Published 5 June 2023 | | | Editors' Suggestion A. Deltuva and D. Jurčiukonis Phys. Rev. C 107, 064602 (2023) – Published 6 June 2023 | Nuclear reactions are a powerful tool for obtaining information on yet unknown aspects of nuclear structure. This work combines an elaborate reaction framework, based on the Faddeev equations, with novel nonlocal nucleon-nucleus potentials including core excitations. The authors show that nonlocalities lead to an improved description of inelastic deuteron scattering data and may impact the extracted structure information. These results may serve as motivation for exploring a wider range of reaction frameworks. | | | | | | Gianluca Cavoto, Angelo Esposito, Guglielmo Papiri, and Antonio D. Polosa Phys. Rev. C 107, 064603 (2023) – Published 7 June 2023 | | | M. Au, M. Athanasakis-Kaklamanakis, L. Nies, R. Heinke, K. Chrysalidis, U. Köster, P. Kunz, B. Marsh, M. Mougeot, L. Schweikhard, S. Stegemann, Y. Vila Gracia, Ch. E. Düllmann, and S. Rothe Phys. Rev. C 107, 064604 (2023) – Published 8 June 2023 | | | A. S. Umar, K. Godbey, and C. Simenel Phys. Rev. C 107, 064605 (2023) – Published 14 June 2023 | | | Xiuniao Zhao, Wenqing Du, R. Capote, and E. Sh. Soukhovitskiĩ Phys. Rev. C 107, 064606 (2023) – Published 15 June 2023 | | | Teruyuki Saito and Masayuki Matsuo Phys. Rev. C 107, 064607 (2023) – Published 16 June 2023 | | | Kyoungsu Heo, Myung-Ki Cheoun, Ki-Seok Choi, K. S. Kim, and W. Y. So Phys. Rev. C 107, 064608 (2023) – Published 20 June 2023 | | | Editors' Suggestion Xiang-Xiang Sun (孙向向) and Lu Guo (郭璐) Phys. Rev. C 107, 064609 (2023) – Published 22 June 2023 | The hot fusion reaction 48C + 238U is studied with time-dependent Hartree-Fock theory in combination with coupled-channels and fusion-by-diffusion models. The authors find that the fusion probability is strongly dependent on the orientation of the 238U nucleus, with the probability being greatest for the tip collision orientation. This understanding will be applied in the future to determine optimal target and projectile combinations for the synthesis of elements Z=119 and 120. | | | | | | Wendi Chen, D. Y. Pang, Hairui Guo, Ye Tao, Weili Sun, and Yangjun Ying Phys. Rev. C 107, 064610 (2023) – Published 23 June 2023 | | | Rajkumar Santra, Balaram Dey, Subinit Roy, R. Palit, Md. S. R. Laskar, H. Pai, S. Rajbanshi, Sajad Ali, Saikat Bhattacharjee, F. S. Babra, Anjali Mukherjee, S. Jadhav, Balaji S. Naidu, Abraham T. Vazhappilly, and Sanjoy Pal Phys. Rev. C 107, 064611 (2023) – Published 26 June 2023 | | | S. Hudan, J. E. Johnstone, Rohit Kumar, R. T. deSouza, J. Allen, D. W. Bardayan, D. Blankstein, C. Boomershine, S. Carmichael, A. Clark, S. Coil, S. L. Henderson, P. D. O'Malley, and W. W. von Seeger Phys. Rev. C 107, 064612 (2023) – Published 26 June 2023 | | | K. Palli et al. Phys. Rev. C 107, 064613 (2023) – Published 28 June 2023 | | | F. Pogliano, A. C. Larsen, S. Goriely, L. Siess, M. Markova, A. Görgen, J. Heines, V. W. Ingeberg, R. G. Kjus, J. E. L. Larsson, K. C. W. Li, E. M. Martinsen, G. J. Owens-Fryar, L. G. Pedersen, S. Siem, G. S. Torvund, and A. Tsantiri Phys. Rev. C 107, 064614 (2023) – Published 28 June 2023 | | | Chetan Sharma, B. R. Behera, Shruti, Amit, Bharti Rohila, Amninderjeet Kaur, Subodh, Neha Dhanda, Ashok Kumar, P. Sugathan, A. Jhingan, K. S. Golda, N. Saneesh, Mohit Kumar, H. Arora, Divya Arora, and H. P. Sharma Phys. Rev. C 107, 064615 (2023) – Published 28 June 2023 | | | Rinku Prajapat, Moumita Maiti, Rishabh Kumar, Malvika Sagwal, Gonika, Chandra Kumar, Rohan Biswas, J. Gehlot, S. Nath, and N. Madhavan Phys. Rev. C 107, 064616 (2023) – Published 29 June 2023 | | | Pablo Torres-Sánchez et al. (The n_TOF Collaboration ) Phys. Rev. C 107, 064617 (2023) – Published 29 June 2023 | | | Zhichao Gao, XueYing Zhang, Yanbin Zhang, Yongqin Ju, Liang Chen, Honglin Ge, Fei Ma, Zhiqiang Chen, and Weifeng Yang Phys. Rev. C 107, 064618 (2023) – Published 30 June 2023 | | | Relativistic Nuclear Collisions | S. Acharya et al. (ALICE Collaboration) Phys. Rev. C 107, 064901 (2023) – Published 5 June 2023 | | | S. Acharya et al. (ALICE Collaboration ) Phys. Rev. C 107, 064902 (2023) – Published 5 June 2023 | | | Weiyao Ke and Ivan Vitev Phys. Rev. C 107, 064903 (2023) – Published 5 June 2023 | | | S. Acharya et al. (ALICE Collaboration) Phys. Rev. C 107, 064904 (2023) – Published 8 June 2023 | | | Changfeng Li, Deeptak Biswas, and Nihar Ranjan Sahoo Phys. Rev. C 107, 064905 (2023) – Published 9 June 2023 | | | Deekshit Kumar, Nachiketa Sarkar, Partha Pratim Bhaduri, and Amaresh Jaiswal Phys. Rev. C 107, 064906 (2023) – Published 20 June 2023 | | | Lilin Zhu, Hua Zheng, Ke Da, Huanjing Gong, Zhizhen Ye, Guiqi Liu, and Rudolph C. Hwa Phys. Rev. C 107, 064907 (2023) – Published 21 June 2023 | | | Austin Baty, Parker Gardner, and Wei Li Phys. Rev. C 107, 064908 (2023) – Published 23 June 2023 | | | Yi-Lin Cheng, Shuzhe Shi, Yu-Gang Ma, Horst Stöcker, and Kai Zhou Phys. Rev. C 107, 064909 (2023) – Published 26 June 2023 | | | Zhidong Yang and Lie-Wen Chen Phys. Rev. C 107, 064910 (2023) – Published 26 June 2023 | | | Dyana C. Duarte, Saul Hernandez-Ortiz, Kie Sang Jeong, and Larry D. McLerran Phys. Rev. C 107, 065201 (2023) – Published 7 June 2023 | | | Sang-Ho Kim, Jung Keun Ahn, Shin Hyung Kim, Seung-il Nam, and Myung-Ki Cheoun Phys. Rev. C 107, 065202 (2023) – Published 8 June 2023 | | | Hannah Valenty, Jennifer Rittenhouse West, Fatiha Benmokhtar, Douglas W. Higinbotham, Asia Parker, and Erin Seroka Phys. Rev. C 107, 065203 (2023) – Published 13 June 2023 | | | Sourodeep De, Pallabi Parui, and Amruta Mishra Phys. Rev. C 107, 065204 (2023) – Published 14 June 2023 | | | Electroweak Interaction, Symmetries | O. Al Hammal, M. Martini, J. Frontera-Pons, T. H. Nguyen, and R. Pérez-Ramos Phys. Rev. C 107, 065501 (2023) – Published 5 June 2023 | | | Jose Bonilla, Bijaya Acharya, and Lucas Platter Phys. Rev. C 107, 065502 (2023) – Published 5 June 2023 | | | Leendert Hayen, Jin Ha Choi, Dustin Combs, R. J. Taylor, Stefan Baeßler, Noah Birge, Leah J. Broussard, Christopher B. Crawford, Nadia Fomin, Michael Gericke, Francisco Gonzalez, Aaron Jezghani, Nick Macsai, Mark Makela, David G. Mathews, Russell Mammei, Mark McCrea, August Mendelsohn, Austin Nelsen, Grant Riley, Tom Shelton, Sky Sjue, Erick Smith, Albert R. Young, and Bryan Zeck Phys. Rev. C 107, 065503 (2023) – Published 27 June 2023 | | | H. Zhang et al. Phys. Rev. C 107, 065801 (2023) – Published 5 June 2023 | | | D. Chernyak, J. Howell, D. Majumdar, N. Mukherjee, O. Nusair, and A. Piepke Phys. Rev. C 107, 065802 (2023) – Published 5 June 2023 | | | L. H. Ru, D. H. Xie, T. Y. Jiao, Z. An, F. Bai, J. W. Cai, X. Fang, Y. H. Fan, Y. X. Fan, B. S. Gao, Y. Z. Li, W. P. Lin, G. Liu, L. Ma, H. J. Ong, X. D. Tang, P. Wang, and X. Zhang Phys. Rev. C 107, 065803 (2023) – Published 7 June 2023 | | | E. Bauer, J. Torres Patiño, and O. G. Benvenuto Phys. Rev. C 107, 065804 (2023) – Published 12 June 2023 | | | N. V. Sosnin et al. (n_TOF Collaboration ) Phys. Rev. C 107, 065805 (2023) – Published 12 June 2023 | | | Philipp Scholz, Richard J. deBoer, Joachim Görres, August Gula, Rebecca Kelmar, Khachatur Manukyan, Edward Stech, Wanpeng Tan, and Michael Wiescher Phys. Rev. C 107, 065806 (2023) – Published 20 June 2023 | | | Paul-Gerhard Reinhard and Witold Nazarewicz Phys. Rev. C 107, 069901 (2023) – Published 6 June 2023 | | | | |
No comments:
Post a Comment