Volume 107, Issue 1 January 2023 | | Advertisement Early bird registration is open for April Meeting 2023: Quarks to Cosmos! Discover cutting-edge research in astrophysics, particle physics, nuclear physics, and gravitation, network with other physicists to advance your career, and learn about current issues relevant to the physics community. Register today » | | | | | Not an APS member? Join today to start connecting with a community of more than 50,000 physicists. | | | | Featured in Physics Letter Xiang-Xiang Sun (孙向向) and Lu Guo (郭璐) Phys. Rev. C 107, L011601 (2023) – Published 4 January 2023 | New modeling explains the relatively high fusion reaction probabilities of halo nuclei, which are composed of a dense core surrounded by a "satellite" of one or two nucleons. | | | | | | Editors' Suggestion M. Piarulli, S. Pastore, R. B. Wiringa, S. Brusilow, and R. Lim Phys. Rev. C 107, 014314 (2023) – Published 20 January 2023 | This study presents calculations of one- and two-body densities in both coordinate and momentum space for various nuclei up to 12C, using the phenomenological AV18+UX and various Norfolk NN + NNN χEFT interactions. It features new calculations of the pair density as a function of both pair separation and center-of-mass, as well as the two-body momentum distribution for short- and long-range pairs differentiated by a pair separation boundary. The full set of results are available online for general use by the nuclear physics community and are intended to provide useful insights into the short-range structure of nuclei and various reaction processes. | | | | | | Editors' Suggestion A. Li, Z. Fu, C. Grant, H. Ozaki, I. Shimizu, H. Song, A. Takeuchi, and L. A. Winslow Phys. Rev. C 107, 014323 (2023) – Published 30 January 2023 | Searches for rare events employ customized detectors with large fiducial mass to effectively reduce background. Leveraging recent breakthroughs in geometric deep learning and spatiotemporal analysis, this work presents a novel machine-learning algorithm (KamNet) as a new, robust tool to maximize the information provided by the kiloton-scale KamLAND liquid-scintillator detector. Adding a so-called "attention mechanism" to KamNet, the authors demonstrate that this enhanced machine-learning approach can increase the sensitivity of the KamLAND-Zen experiment to zero-neutrino- and two-neutrino double-β decay. That mechanism also elucidates the underlying physics KamNet is using for background rejection. | | | | | | Editors' Suggestion S. Ayik, M. Arik, O. Yilmaz, B. Yilmaz, and A. S. Umar Phys. Rev. C 107, 014609 (2023) – Published 10 January 2023 | The production of elements close to the superheavy island of stability, with Z>100, is one of the most appealing challenges in nuclear physics. Based on a stochastic extension of the time-dependent Hartree-Fock theory, this article presents accurate microscopic calculations of multinucleon transfer for the 250Cf+232Th system at Ec.m.=950 MeV. Isotope production cross sections are described without any adjustable parameters, thus providing a benchmark to new experimental searches. | | | | | | Editors' Suggestion Joseph I. Kapusta, Scott Pratt, and Mayank Singh Phys. Rev. C 107, 014913 (2023) – Published 30 January 2023 | This paper uses simple models to interpret recent measurements of anomalously strong correlations between neutral and charged kaon production performed at the LHC for high-energy heavy-ion collisions. Thermal models, including charge conservation effects, are found to be insufficient to explain the data for the most central collisions. More exotic conjectures involving coherent emission can reproduce the observations if 30% of the kaons are emitted from coherent sources in the most central collisions. Such coherence might be related to the melting and re-freezing of the QCD vacuum. | | | | | | Editors' Suggestion G. B. King, A. Baroni, V. Cirigliano, S. Gandolfi, L. Hayen, E. Mereghetti, S. Pastore, and M. Piarulli Phys. Rev. C 107, 015503 (2023) – Published 27 January 2023 | Searches for new physics can be conducted by brute force or, like the perihelion shift of Mercury, looking for subtle but persistent discrepancies. This detailed paper carries out high-precision calculations of the β-decay spectrum of 6He, and estimates the experimental precision needed to reveal hints of charged-current interactions beyond the Standard Model and/or sterile neutrinos. | | | | | | Editors' Suggestion Takashi Nakatsukasa Phys. Rev. C 107, 015802 (2023) – Published 9 January 2023 | Calculations for nuclear structure at high excitation energy or of nuclear matter in explosive stellar phenomena and neutron stars require intensive computations. The author tests the performance of a numerical method based on Fermi operator expansion that requires neither diagonalization nor Gram-Schmidt orthonormalization. The approach is suitable for massively parallel computing with distributed memory, and the calculations promise to scale well for large space sizes. Applied to finite nuclei and inhomogeneous nuclear matter, the method is efficient at high temperature, and the calculations clearly show the liquid-gas phase transition. | | | | | | Featured in Physics Letter Xiang-Xiang Sun (孙向向) and Lu Guo (郭璐) Phys. Rev. C 107, L011601 (2023) – Published 4 January 2023 | New modeling explains the relatively high fusion reaction probabilities of halo nuclei, which are composed of a dense core surrounded by a "satellite" of one or two nucleons. | | | | | | Letter D. Mücher, A. Spyrou, M. Wiedeking, M. Guttormsen, A. C. Larsen, F. Zeiser, C. Harris, A. L. Richard, M. K. Smith, A. Görgen, S. N. Liddick, S. Siem, H. C. Berg, J. A. Clark, P. A. DeYoung, A. C. Dombos, B. Greaves, L. Hicks, R. Kelmar, S. Lyons, J. Owens-Fryar, A. Palmisano, D. Santiago-Gonzalez, G. Savard, and W. W. von Seeger Phys. Rev. C 107, L011602 (2023) – Published 11 January 2023 | | | Letter A. Mercenne, N. Michel, J. P. Linares Fernández, and M. Płoszajczak Phys. Rev. C 107, L011603 (2023) – Published 12 January 2023 | | | Nucleon-Nucleon Interaction, Few-Body Systems | Isak Svensson, Andreas Ekström, and Christian Forssén Phys. Rev. C 107, 014001 (2023) – Published 20 January 2023 | | | Sean B. S. Miller, Andreas Ekström, and Christian Forssén Phys. Rev. C 107, 014002 (2023) – Published 25 January 2023 | | | E. Garrido, A. S. Jensen, H. O. U. Fynbo, and K. Riisager Phys. Rev. C 107, 014003 (2023) – Published 31 January 2023 | | | Takayuki Myo and Kiyoshi Katō Phys. Rev. C 107, 014301 (2023) – Published 4 January 2023 | | | H. H. Li, Q. Yuan, J. G. Li, M. R. Xie, S. Zhang, Y. H. Zhang, X. X. Xu, N. Michel, F. R. Xu, and W. Zuo Phys. Rev. C 107, 014302 (2023) – Published 5 January 2023 | | | B. Li, D. Vretenar, Z. X. Ren, T. Nikšić, J. Zhao, P. W. Zhao, and J. Meng Phys. Rev. C 107, 014303 (2023) – Published 5 January 2023 | | | Y. M. Xing et al. Phys. Rev. C 107, 014304 (2023) – Published 11 January 2023 | | | F. Knapp, P. Papakonstantinou, P. Veselý, G. De Gregorio, J. Herko, and N. Lo Iudice Phys. Rev. C 107, 014305 (2023) – Published 12 January 2023 | | | M. Hukkanen, W. Ryssens, P. Ascher, M. Bender, T. Eronen, S. Grévy, A. Kankainen, M. Stryjczyk, L. Al Ayoubi, S. Ayet, O. Beliuskina, C. Delafosse, W. Gins, M. Gerbaux, A. Husson, A. Jokinen, D. A. Nesterenko, I. Pohjalainen, M. Reponen, S. Rinta-Antila, A. de Roubin, and A. P. Weaver Phys. Rev. C 107, 014306 (2023) – Published 17 January 2023 | | | J. Lin, Y. K. Wang, C. Xu, Z. H. Li, H. Hua, S. Q. Zhang, D. W. Luo, H. Y. Wu, J. Meng, X. G. Wu, Y. Zheng, C. B. Li, T. X. Li, Z. Y. Huang, H. Cheng, C. Y. Guo, Z. X. Zhou, Z. Q. Chen, and C. G. Wang Phys. Rev. C 107, 014307 (2023) – Published 17 January 2023 | | | W. Zhang et al. Phys. Rev. C 107, 014308 (2023) – Published 19 January 2023 | | | Priyanka Choudhary, Praveen C. Srivastava, Michael Gennari, and Petr Navrátil Phys. Rev. C 107, 014309 (2023) – Published 20 January 2023 | | | Na-Na Ma, Tian-Liang Zhao, Wen-Xia Wang, and Hong-Fei Zhang Phys. Rev. C 107, 014310 (2023) – Published 20 January 2023 | | | B. Moon et al. Phys. Rev. C 107, 014311 (2023) – Published 20 January 2023 | | | P. Descouvemont Phys. Rev. C 107, 014312 (2023) – Published 20 January 2023 | | | Editors' Suggestion M. Piarulli, S. Pastore, R. B. Wiringa, S. Brusilow, and R. Lim Phys. Rev. C 107, 014314 (2023) – Published 20 January 2023 | This study presents calculations of one- and two-body densities in both coordinate and momentum space for various nuclei up to 12C, using the phenomenological AV18+UX and various Norfolk NN + NNN χEFT interactions. It features new calculations of the pair density as a function of both pair separation and center-of-mass, as well as the two-body momentum distribution for short- and long-range pairs differentiated by a pair separation boundary. The full set of results are available online for general use by the nuclear physics community and are intended to provide useful insights into the short-range structure of nuclei and various reaction processes. | | | | | | L. Hlophe, K. Kravvaris, and S. Quaglioni Phys. Rev. C 107, 014315 (2023) – Published 20 January 2023 | | | Qian Wu, Yasuro Funaki, and Xurong Chen Phys. Rev. C 107, 014317 (2023) – Published 23 January 2023 | | | L. Guo, W. L. Lv, Y. F. Niu, D. L. Fang, B. S. Gao, K. A. Li, and X. D. Tang Phys. Rev. C 107, 014318 (2023) – Published 23 January 2023 | | | Donal B. Day, Leonid L. Frankfurt, Misak M. Sargsian, and Mark I. Strikman Phys. Rev. C 107, 014319 (2023) – Published 24 January 2023 | | | Ziming Li et al. Phys. Rev. C 107, 014320 (2023) – Published 25 January 2023 | | | I. J. Arnquist et al. (Majorana Collaboration) Phys. Rev. C 107, 014321 (2023) – Published 25 January 2023 | | | S. Bottoni, E. R. Gamba, G. De Gregorio, A. Gargano, S. Leoni, B. Fornal, N. Brancadori, G. Ciconali, F. C. L. Crespi, N. Cieplicka-Oryńczak, Ł. W. Iskra, G. Colombi, Y. H. Kim, U. Köster, C. Michelagnoli, F. Dunkel, A. Esmaylzadeh, L. Gerhard, J. Jolie, L. Knafla, M. Ley, J.-M. Régis, K. Schomaker, and M. Sferrazza Phys. Rev. C 107, 014322 (2023) – Published 26 January 2023 | | | Editors' Suggestion A. Li, Z. Fu, C. Grant, H. Ozaki, I. Shimizu, H. Song, A. Takeuchi, and L. A. Winslow Phys. Rev. C 107, 014323 (2023) – Published 30 January 2023 | Searches for rare events employ customized detectors with large fiducial mass to effectively reduce background. Leveraging recent breakthroughs in geometric deep learning and spatiotemporal analysis, this work presents a novel machine-learning algorithm (KamNet) as a new, robust tool to maximize the information provided by the kiloton-scale KamLAND liquid-scintillator detector. Adding a so-called "attention mechanism" to KamNet, the authors demonstrate that this enhanced machine-learning approach can increase the sensitivity of the KamLAND-Zen experiment to zero-neutrino- and two-neutrino double-β decay. That mechanism also elucidates the underlying physics KamNet is using for background rejection. | | | | | | E. Clément et al. Phys. Rev. C 107, 014324 (2023) – Published 30 January 2023 | | | M. J. Yang, H. Sagawa, C. L. Bai, and H. Q. Zhang Phys. Rev. C 107, 014325 (2023) – Published 30 January 2023 | | | R. Chakma, A. Lopez-Martens, K. Hauschild, A. V. Yeremin, O. N. Malyshev, A. G. Popeko, Yu. A. Popov, A. I. Svirikhin, V. I. Chepigin, E. A. Sokol, A. V. Isaev, A. A. Kuznetsova, M. L. Chelnokov, M. S. Tezekbayeva, I. N. Izosimov, O. Dorvaux, B. Gall, and Z. Asfari Phys. Rev. C 107, 014326 (2023) – Published 31 January 2023 | | | L. Jokiniemi, T. Miyagi, S. R. Stroberg, J. D. Holt, J. Kotila, and J. Suhonen Phys. Rev. C 107, 014327 (2023) – Published 31 January 2023 | | | Amritraj Mahato, Dharmendra Singh, Nitin Sharma, Pankaj K. Giri, Sneha B. Linda, Harish Kumar, Suhail A. Tali, Asif Ali, M. Afzal Ansari, Nabendu Kumar Deb, N. P. M. Sathik, S. Kumar, R. Kumar, S. Muralithar, and R. P. Singh Phys. Rev. C 107, 014601 (2023) – Published 3 January 2023 | | | C. D. Pruitt, J. E. Escher, and R. Rahman Phys. Rev. C 107, 014602 (2023) – Published 3 January 2023 | | | Na Tang, Bing Li, Jing-Jing Li, and Feng-Shou Zhang Phys. Rev. C 107, 014603 (2023) – Published 3 January 2023 | | | Q. Fable, A. Chbihi, J. D. Frankland, P. Napolitani, G. Verde, E. Bonnet, B. Borderie, R. Bougault, E. Galichet, T. Génard, D. Gruyer, M. Henri, M. La Commara, A. Le Fèvre, J. Lemarié, N. Le Neindre, O. Lopez, P. Marini, M. Pârlog, A. Rebillard-Soulié, W. Trautmann, E. Vient, and M. Vigilante (INDRA Collaboration) Phys. Rev. C 107, 014604 (2023) – Published 5 January 2023 | | | A. B. Larionov Phys. Rev. C 107, 014605 (2023) – Published 5 January 2023 | | | Z. L. Mohamed, Y. Kim, J. P. Knauer, and M. S. Rubery Phys. Rev. C 107, 014606 (2023) – Published 6 January 2023 | | | C. Hebborn and G. Potel Phys. Rev. C 107, 014607 (2023) – Published 6 January 2023 | | | T. Shiraishi, S. Akamatsu, T. Naka, T. Asada, G. De Lellis, V. Tioukov, G. Rosa, R. Kobayashi, N. D'Ambrosio, A. Alexandrov, and O. Sato Phys. Rev. C 107, 014608 (2023) – Published 10 January 2023 | | | Editors' Suggestion S. Ayik, M. Arik, O. Yilmaz, B. Yilmaz, and A. S. Umar Phys. Rev. C 107, 014609 (2023) – Published 10 January 2023 | The production of elements close to the superheavy island of stability, with Z>100, is one of the most appealing challenges in nuclear physics. Based on a stochastic extension of the time-dependent Hartree-Fock theory, this article presents accurate microscopic calculations of multinucleon transfer for the 250Cf+232Th system at Ec.m.=950 MeV. Isotope production cross sections are described without any adjustable parameters, thus providing a benchmark to new experimental searches. | | | | | | Nirupama Kumari, Aman Deep, Sahila Chopra, and Rajesh Kharab Phys. Rev. C 107, 014610 (2023) – Published 17 January 2023 | | | Mikhail Egorov Phys. Rev. C 107, 014611 (2023) – Published 18 January 2023 | | | Nathan P. Giha, Stefano Marin, James A. Baker, Isabel E. Hernandez, Keegan J. Kelly, Matthew Devlin, John M. O'Donnell, Ramona Vogt, Jørgen Randrup, Patrick Talou, Ionel Stetcu, Amy E. Lovell, Olivier Litaize, Olivier Serot, Abdelaziz Chebboubi, Ching-Yen Wu, Shaun D. Clarke, and Sara A. Pozzi Phys. Rev. C 107, 014612 (2023) – Published 20 January 2023 | | | Sarbjeet Kaur, Navjot Kaur, Rupinder Kaur, BirBikram Singh, and S. K. Patra Phys. Rev. C 107, 014613 (2023) – Published 24 January 2023 | | | Zehong Liao, Long Zhu, Jun Su, and Cheng Li Phys. Rev. C 107, 014614 (2023) – Published 24 January 2023 | | | Xiang-Quan Deng (邓祥泉) and Shan-Gui Zhou (周善贵) Phys. Rev. C 107, 014616 (2023) – Published 25 January 2023 | | | Matthias Göbel, Bijaya Acharya, Hans-Werner Hammer, and Daniel R. Phillips Phys. Rev. C 107, 014617 (2023) – Published 25 January 2023 | | | J. B. Natowitz, H. Pais, and G. Röpke Phys. Rev. C 107, 014618 (2023) – Published 30 January 2023 | | | J. Diklić, S. Szilner, L. Corradi, T. Mijatović, G. Pollarolo, P. Čolović, G. Colucci, E. Fioretto, F. Galtarossa, A. Goasduff, A. Gottardo, J. Grebosz, A. Illana, G. Jaworski, M. Jurado Gomez, T. Marchi, D. Mengoni, G. Montagnoli, D. Nurkić, M. Siciliano, N. Soić, A. M. Stefanini, D. Testov, J. J. Valiente-Dobón, and N. Vukman Phys. Rev. C 107, 014619 (2023) – Published 30 January 2023 | | | B. Longfellow, A. Gade, D. Bazin, P. C. Bender, M. Bowry, B. A. Brown, B. Elman, E. Lunderberg, D. Rhodes, M. Spieker, D. Weisshaar, and S. J. Williams Phys. Rev. C 107, 014620 (2023) – Published 30 January 2023 | | | Relativistic Nuclear Collisions | Kouki Nakamura, Takahiro Miyoshi, Chiho Nonaka, and Hiroyuki R. Takahashi Phys. Rev. C 107, 014901 (2023) – Published 4 January 2023 | | | Claude Pruneau, Victor Gonzalez, Brian Hanley, Ana Marin, and Sumit Basu Phys. Rev. C 107, 014902 (2023) – Published 5 January 2023 | | | Wei-bo He, Guo-yun Shao, and Chong-long Xie Phys. Rev. C 107, 014903 (2023) – Published 6 January 2023 | | | Wenbin Zhao, Sangwook Ryu, Chun Shen, and Björn Schenke Phys. Rev. C 107, 014904 (2023) – Published 6 January 2023 | | | Pingal Dasgupta, Han-Sheng Wang (王瀚生), and Guo-Liang Ma (马国亮) Phys. Rev. C 107, 014905 (2023) – Published 10 January 2023 | | | Hyeongock Yun, Daeho Park, Sungsik Noh, Aaron Park, Woosung Park, Sungtae Cho, Juhee Hong, Yongsun Kim, Sanghoon Lim, and Su Houng Lee Phys. Rev. C 107, 014906 (2023) – Published 12 January 2023 | | | N. J. Abdulameer et al. (PHENIX Collaboration) Phys. Rev. C 107, 014907 (2023) – Published 13 January 2023 | | | Gregoire Pihan, Marcus Bluhm, Masakiyo Kitazawa, Taklit Sami, and Marlene Nahrgang Phys. Rev. C 107, 014908 (2023) – Published 18 January 2023 | | | Mary Cody, Sean Gavin, Brendan Koch, Mark Kocherovsky, Zoulfekar Mazloum, and George Moschelli Phys. Rev. C 107, 014909 (2023) – Published 20 January 2023 | | | Kshitish Kumar Pradhan, Dushmanta Sahu, Ronald Scaria, and Raghunath Sahoo Phys. Rev. C 107, 014910 (2023) – Published 20 January 2023 | | | Ting-Ting Wang (王婷婷), Yu-Gang Ma (马余刚), and Song Zhang (张松) Phys. Rev. C 107, 014911 (2023) – Published 20 January 2023 | | | Tom Reichert, Jan Steinheimer, Volodymyr Vovchenko, Benjamin Dönigus, and Marcus Bleicher Phys. Rev. C 107, 014912 (2023) – Published 23 January 2023 | | | Editors' Suggestion Joseph I. Kapusta, Scott Pratt, and Mayank Singh Phys. Rev. C 107, 014913 (2023) – Published 30 January 2023 | This paper uses simple models to interpret recent measurements of anomalously strong correlations between neutral and charged kaon production performed at the LHC for high-energy heavy-ion collisions. Thermal models, including charge conservation effects, are found to be insufficient to explain the data for the most central collisions. More exotic conjectures involving coherent emission can reproduce the observations if 30% of the kaons are emitted from coherent sources in the most central collisions. Such coherence might be related to the melting and re-freezing of the QCD vacuum. | | | | | | Y. Tian et al. (The CLAS Collaboration) Phys. Rev. C 107, 015201 (2023) – Published 5 January 2023 | | | D. Tsirkov, B. Baimurzinova, V. Komarov, A. Kulikov, A. Kunsafina, V. Kurbatov, Zh. Kurmanalyiev, and Yu. Uzikov Phys. Rev. C 107, 015202 (2023) – Published 11 January 2023 | | | Igor I. Strakovsky, William J. Briscoe, Olga Cortes Becerra, Michael Dugger, Gary Goldstein, Victor L. Kashevarov, Axel Schmidt, Peter Solazzo, and Byung-Geel Yu Phys. Rev. C 107, 015203 (2023) – Published 18 January 2023 | | | Chengdong Han, Wei Kou, Rong Wang, and Xurong Chen Phys. Rev. C 107, 015204 (2023) – Published 23 January 2023 | | | Electroweak Interaction, Symmetries | Dong-Liang Fang and Amand Faessler Phys. Rev. C 107, 015501 (2023) – Published 17 January 2023 | | | N. Severijns, L. Hayen, V. De Leebeeck, S. Vanlangendonck, K. Bodek, D. Rozpedzik, and I. S. Towner Phys. Rev. C 107, 015502 (2023) – Published 23 January 2023 | | | Editors' Suggestion G. B. King, A. Baroni, V. Cirigliano, S. Gandolfi, L. Hayen, E. Mereghetti, S. Pastore, and M. Piarulli Phys. Rev. C 107, 015503 (2023) – Published 27 January 2023 | Searches for new physics can be conducted by brute force or, like the perihelion shift of Mercury, looking for subtle but persistent discrepancies. This detailed paper carries out high-precision calculations of the β-decay spectrum of 6He, and estimates the experimental precision needed to reveal hints of charged-current interactions beyond the Standard Model and/or sterile neutrinos. | | | | | | D. K. Keblbeck, R. Bhandari, N. D. Gamage, M. Horana Gamage, K. G. Leach, X. Mougeot, and M. Redshaw Phys. Rev. C 107, 015504 (2023) – Published 30 January 2023 | | | C. Mondal and F. Gulminelli Phys. Rev. C 107, 015801 (2023) – Published 5 January 2023 | | | Editors' Suggestion Takashi Nakatsukasa Phys. Rev. C 107, 015802 (2023) – Published 9 January 2023 | Calculations for nuclear structure at high excitation energy or of nuclear matter in explosive stellar phenomena and neutron stars require intensive computations. The author tests the performance of a numerical method based on Fermi operator expansion that requires neither diagonalization nor Gram-Schmidt orthonormalization. The approach is suitable for massively parallel computing with distributed memory, and the calculations promise to scale well for large space sizes. Applied to finite nuclei and inhomogeneous nuclear matter, the method is efficient at high temperature, and the calculations clearly show the liquid-gas phase transition. | | | | | | Virender Thakur, Raj Kumar, Pankaj Kumar, Mukul Kumar, C. Mondal, Kaixuan Huang, Jinniu Hu, B. K. Agrawal, and Shashi K. Dhiman Phys. Rev. C 107, 015803 (2023) – Published 12 January 2023 | | | Zidu Lin, Andrew W. Steiner, and Jérôme Margueron Phys. Rev. C 107, 015804 (2023) – Published 24 January 2023 | | | | |
No comments:
Post a Comment